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. 1.0 INTRODUCTION AN
L”x’.'\':-\. !
Mty
5 R
) The effect of plasticity on the rate of growth of fatigue cracks is -'.:.-:::-:'.-:'
Ay
» . PP : . . : LA
. significant for a wide range of problems associated with the damage tolerance '.'_.-?'.-_:.-
,h‘ -\*'.-.‘..
N
assessment of aerospace structures. The range of problems includes crack ‘L;A’h‘h
< ' Db
v growth from cold worked fastener holes, crack growth through plasticity due to :—.“
m
N local notch stresses, crack driving force for thermal gradient fields and o
N RN
> welding residual strain fields, small flaw growth in high nominal stress -;"."""
- LTNAE
._; fields, and numerous related problems. These problems have, of course, been -f-f-f:'\-:-j-
) Gt
N analyzed using a variety of approximate analytical or numerical procedures. :'.':'.‘:E_': :}:
;l. -_,,'.,'.:_:. '
: However, as will be summarized within this report, many of these earlier "'""’.
- L
modeling approaches have involved errors which may significantly affect the - 7
a predicted fatigue crack growth life of the structure. The current research ey
i has resulted in some new and critical insights into this class of problems,

while providing a basis for improved modeling of these problems.

- ‘o
;\ \~:.‘
e The current research makes use of the boundary integral equation (BIE) :}:-
2-.
RN
‘o . T AR
] method, as modified to account exactly for the elastic crack problem. The ’
" AN
“ B A
* usual BIE formulation for elastic problems reduces the numerical problem to T
,,} one of modeling the boundary data, while preserving the complete interior y :.,-‘;
. : e
solution of the field equations. 1In the elastic fracture mechanics problem, e T
2 the Green's function approach is used wherein the BIE is modified to account
o for the presence of a stress free crack at an arbitrary location withirn the
I'.
’ structure. The use of the Green's function for the crack eliminates the need
. (ECRASIEN
a> . . . BN
,'.\ to model the boundary of the crack, and provides a complete mathematical :.-};:.-:
- \‘.:\’;\::\
description of the elastic strain field within the body, due to the crack. :.»:a:-.;:
- NENCNLN
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This clearly contrasts with the finite element method which requires that the

a !,

PR NS
S

crack surface and the interior strains be modeled with some set of

interpolation functions.

The BIE method has been successfully modified to account for

elastoplastic response by a number of investigators. However, extension of

the fracture mechanics model with the Green's function approach has not been
previously demonstrated. In order to account for elastoplastic response with
the BIE method one must numerically model the interior plastic strain field.
In all other ways the elastoplasticity solution uses the standard elastic BIE
formulation. The current work reports on the successful extension of the
special Green's function formulation for the fracture mechanics problem to the
elastoplasticity formulation. Not only has the work resulted in accurate
models of crack tip plasticity for a reference problem, but it has shown some
important new analytical and numerical results for cracks growing in plastic
strain fields.

The second year of the contract effort focussed on the crack extension
problem. In the elastic case, a direct solution method for fracture mechanics
weight functions was established. The elastoplastic problem considered the
extension of the elastic crack into its prior plastic wake. The effects of
crack tip overloads on retardation or acceleration through closure and
residual stress effects are included. In addition, the elastoplastic BIE
formulation was more fully exploited for problems of crack growth in residual
strain fields such as weldments.

Some work addressed improvements in a new flat crack BIE formulation for
3D fracture mechanics analysis. The majority of the work on this task was
funded by the Internal Research Panel of Southwest Research. However, some

analytical formulations, derived from the BIE relations, were achieved under

N I R PRSI, (T N T NN T -
W e e Te e e AR A .t e, - - PR e A A F T e N T
EOE I BRSNS APAE AN AL IR P PE PO R . 5, L AL A R GV G T 0 s WO S 130 SN IO I U
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& report on this 3D formulation completes the

the current Air Force contract.

technical presentation.
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2.0 RESEARCH OBJECTIVES ..:f:
::;:'J’,m A

Generally speaking, advanced aerospace structures have been designed for ;?i;;
damage tolerance considerations'using elastic fracture mechanics models. EE;E%Z
Problems associated with residual plastic strains at notches, cold worked ;Egi;
fastener holes, weld residual strains, and thermal gradient loading have been
modeled using elastic superposition methods along with elastic fracture
mechaniecs models. <Crack tip plasticity is involved in all fatigue crack .
growth problems. Crack tip plasticity dominates the problem of predicting
crack growth under spectrum loading conditions where acceleration and
retardation effects are important. Finally, the small flaw problem, wherein
crack growth rate is apparently accelerated relative to the large flaw
problem, cannot be currently explained by elastic fracture mechanics
considerations.

The development of improved models for the crack growth problem for the ;; f;ﬁ
full range of these problems is crucial to improved damage tolerance { ESE
assessment for advanced aerospace structures. The overall objective for the e
current research is to provide a new basis for making damage tolerance E
assessments through numerical modeling of crack tip behavior, including the i:

effects of plastic or other residual strains. The elastoplastic BIE method is
the basis for the current effort.

» The first goal of the originally proposed program was to extend an

LOT o S o
l""'l
11
T
L4

existing planar elastic fracture mechanics analysis based on the BIE

S

)

methodology to the analysis of plastic zones around cracks. The second

proposed goal was to establish fundamental results for crack tip elastoplastic

behavior, based on a numerical and analytical study of the elastoplastic BIE

formulation. The third proposed goal was to establish the credibility of the

—-. '-‘ '-' ‘-‘ --. —-. ‘." ‘-'.‘ . v . - ." .
S N S S S A
g A > L
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elastoplastic BIE formulation relative to the finite element method for

IB refined numerical analysis of the nonlinear fracture mechanics problem, and to ;
- apply the capability to important problems of fatigue crack growth modeling iigi;i;
Ei for advanced aerospace structures. The goal for the second year of the effort ;Egﬁégi
~ RN
- was to extend the research to the problem of modeling crack extension under ’:"’i‘
;2 elastoplastic conditions. L
:} This report summarizes key findings of the current research effort. The
.
= next section summarizes the basic two-dimensional elastoplastic formulation
&: and applications. Included in this work are the preliminary applications of
) the new method to crack extension into prior plastic zones. The next section
;{ reports on the use of the new BIE formulation for elastic crack extension.
;: This new result allows for the direct computation of crack weight functions.
g The last section reports on some recent work, for the 3D BIE fracture
i' mechanics formulation. Some contrast with the 2D formulation is noted.
. Further work on the 3D problem is expected in the subsequent research program. .-
N
.
&
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PN 3.0 ELASTOPLASTIC FRACTURE MECHANICS MODELING
Ca
o
4 o :;'-"J--
o 3.1 FReview of the Mathematics ;:'f%
n' ~ . ';-‘-."-:
K- :ﬁ A complete treatment of the elastic formulation for the Green's function gij
- ROAA
BIE model for cracked planar problems is given by Snyder and Cruse [1] and é’&’
T Cruse [2]. The full development of the elastoplastic solution is given by
. Cruse and Polch [3]. The following summarizes these developments.
- The basic BIE formulation for a crack problem, as illustrated in Figure
- i: 1, is given as follows
4 \‘
3 - * % Y
o - C..u.(P) + [T, (P,Q)u,(Q)ds + JT..(P,Q)u,(Q)ds
jiti ji i i i
s 7 (1)
* * A0
= JU,.(P,Q)t.(Q)ds « [U_.(P,Q)t./(Q)ds
Ji i Jji i
s r /
a i
" _ In (1) the uj, t; terms are the boundary displacement and traction vectors for
\~ \
N the modeled problem. The kernel functions (or influence functions) Uij*'
[
R Tij*, are mathematical entities giving the displacement and traction that are
; - computed on S, I for the problem of an infinite body loaded at p(x), P(x)t by
ﬂ f; a set of unit point loads in each coordinate direction. The star on the
kernel functions denotes the addition to the point load solution of the terms
necessary to provide for a traction free crack at a specified location and
_ orientation in the geometry.
The use of a Green's function for special geometries is well developed in
? :% potential theory, as discussed by Greenberg [4]. 1In the current application
- we seek to obtain fracture mechanics solutions for the case of traction free
>
:‘ ;: TLower case p(x)is ar interior point; upper case P(x) is a boundary point.
, .
4+
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Basic Geometry for Green's Function Formulation

Figure 1.
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cracks in finite planar bodies. The term with t;(Q) for Qer in (1) is

therefore zero, as shown. The use of the cracked body Green's function
results in the traction kernel also being zero on the crack, viz.
T;;*(P,Q) = 0,Q er, also as shown in (1).

Thus, (1) constitutes the constraint equation that must be satisfied by

u ti on the uncracked portion of the surface. This equation can be reduced

i’
to solvable, algebraic form through the use of suitable approximations to the

boundary data ug, t In the current application we use the approximation of

i
piecewise linear interpolations of u;, t, as developed by Cruse [21].

The form of (1) for the interior displacement provides a means of direct
computation of interior strains, stresses, and stress intensity factors.
Simply stated, the interior quantities depend on the totality of boundary data

for ug, ty through integration of these quantities together with appropriate

kernel functions for the cracked plane.
Introduction of inelastic strains (e.g., residual strains due to welding,

thermal gradient strains, elastoplastic strains) éiﬁ to the BIE formulation tt
A
results in a modification to (1)

: . . -
Cyzui(P) + iTJi (P,Q)u;(Q)ds = guji (P,Q)t;(Q)ds

(2)
*

. A
+ Zjig(P,q)eiQ(q)dA

<A>

The addition of the volumetric (area in 2D) integral in (2) is seen as a

correction term to the elastic BIE, (1). The kernel function zjiz* in this

newWw integral consists of derivatives of the elastic displacement kernel Uij*'

and its form differs for plane stress or plane strain [5].

tTThe dots on the variables denote an increment in the variable.
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Equation (2) no longer provides a direct means for computing the boundary
data, except when éijA(q) is specified. Tﬁus, for elastoplastic response, an
additional relationship is needed to compute the plastic strains for (2). The
appropriate equation is the interior strain distribution, as written by Cruse

and Polch [3].

* . ®
¢i5(P) = g Sy1 3P QL (Q)ds JSDkiJ(p,Q)uk(Q)ds
* . A A
+ (Zigm 3 * iam, 1) éem(@d8 * Eypriéor () (3)

Equation (3) computes the interior total strain increment in terms of the
boundary data and the interior anelastic strain increment. For elastoplastic

solutions, the unknown data u,, t A are solved for incrementally and

VAR % éiJ
equations (2), (3) are coupled on an iterative basis. The interior inelastic
strains are modeled as piecewise constant over AAi area segments in the
current study. The full solution algorithm for the elastoplastic case is
given in Figure 2. The yield criterion has to be satisfied, giving the amount
of total strain that is plastic at each load level. The use of iteration as
opposed to a tangent modulus formulation allows us to precompute all of the
elastic kernel functions, to invert one of these, and to perform all of the

ensuing numerics as matrix multiplications.

3.2 Stress Intensity Factor Computations

The structure of (3) has been investigated by Cruse and Polch [3] for
interior points approaching the crack tip. It was found that, for the
elastoplastic case where the crack tip strains can exhibit a singularity up to
1/p (where p is the distance from the crack tip), eq. (3) still results in

convergent integrals in (2), (3). However, the actual strength of the plastic

"'.n .'l>‘- N .‘-'.
ARSI

’

[\
.\‘\l_-.

1 e

e T B I

e ds
., ~

AR

i,
B
'Rt RS

R
NN




CALCULATE ALL
THE MATRICES

INITIALIZE SOLUTION VECTORS

(e

AL o B Ry

e T RN RIRNN R SRS W W

~y v
L7

), {31, G0
[]

( INCREMENT LOAD {y} ]
]

s

BOUNDARY SOLUTION

{x}= [a"1]({3} + {3P})

INTERIOR SOLUTION

{e} = [s] - {u} + [D] - {t} + [G] - {&P}

‘.

)
A

B )

h PP P
T ldt-I-.I-

i fe N B % T Yy

o

LR 4

L T SO

STRESS-STRAIN LAW

=

[=]

E

m
-~ >
W
| |E=
- o

~ (2]
—
f‘!nz
[ ] @a =
o g .
w a
-~ Iy

13
=

[

5

B

CHECK
({3P} < €)

CONVERGENCE

I

|

|
CONVERGED

LAST LOAD STEP

Elastoplastic Solution Algorithm

Figure 2.

s

La

AT AP

x5




L LS

L/ = 2%
s’(‘q L:b.

24

Pl W N
L)

]
LR I

.-

8, 8

"

AR
ot
~

.S
.
A
‘e
(Y

strain singularity is a function of the work hardening (see Hutchinson [6])
and can only be inferred from the resulting strain distributions after
satisfying the flow rule implic;t in (3).

The elastic stress intensity factor computation for the BIE formulation
using the cracked Green's function results directly from the elastic version
of (3). As shown by Snyder and Cruse [1], the kernels in the two boundary
integrals in (3) are explicitly dependent on the inverse-square root of the
distance of p(x) from the crack tips (+/-a). Further, for the nonsingular
distribution of inelastic strains in (3), the volumetric kernel has the same
explicit dependence. Thus, for nonsingular, inelastic strains we obtain the
following direct, path independent evaluation of the elastic stress intensity

factors

(KI,K

1,11 1,11
) =S Ry (@ (@ds JL @t Qs

s (4)
. EijI’II(q)eijA(q)dA

The first two terms in (Y4) are those previously used by Snyder and Cruse
[1] and by Stern, et al. [7]. These are path independent integrals which
provide a simple quadrature for computing KI' KII from any solution for Ui, &y
on a path around the crack, but excluding the crack.

Equation (4) states that nonsingular, inelastic strains modify the
elastic KI’ KII values in an equally simple sense of quadrature when these
gquantities are specified in the volume (area). Some examples of this
quadrature for a notch plasticity problem will be discussed below.

In developing eg. (4), it was assumed that the inelastic strains were

nonsingular, thus neglecting the crack tip elastoplastic effects. The
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N additional terms, reflecting the higher order singular behavior, are ::_*-(:
! represented by the incremental elastoplastic strain portion of eq. (3) ‘ 9
- __‘.'.f
e . }s'.fri’
S P _.E).‘-,,
e 4P = [ Ziom, 5" « Tjam) Som (9)dA i
z <A> (5) "
- _. Eisz.m_j Eimp(p)
i
. As discussed by Cruse and Polch [3], eq. (5) is dimensionally homogeneous for It
X \ any physical singularity in plastic strain increment as p(x)+/-a, but the ‘.\:},'
AT
. ':‘ order of the singularity is not directly solvable from (5). ti‘:i;:
' A considerable number of technologically important problems to the {.-.:
N ; aerospace industry are associated with the use of linear elastic fracture "\_,
| ) mechanics parameters (i.e., K;, K;;) for problems of limited or localized ﬁ\‘,’
A . plasticity. These include predicting KI for cracks which are undergoing :-:',)\j.'f
\_ cyclic plasticity resulting in crack closure effects on spectrum crack growth, EE\'R-{:
; and cracks growing in the plastic zone of a bolthole subject to high loading E;g?‘:
; - or prestressing.
. o The present research seeks to shed light on some of these problems by
7:: :f presenting a stress intensity factor computation algorithm that can directly
b, and unambiguously model these kinds of limited plasticity effects. For such
: X\ problems, the solution given in (4) is to be used. The two boundary data \'E\S
. :}; integrals in (4) reflect the plastic strain distribution of the crack tip, as }z{.\.:i
NI well as other anelastic strains through the volume integral in (2). Secondly, ;f::_‘!
.: :.';: the prior plasticity of a notch will affect K{, K;; through the volume E\::\:
" integral of those nonsingular strains in (4). The resulting values of KI‘ K+t E‘}:E,.E
- . are the plasticity corrected elastic stress intensity factors which define the ""‘
;: strength of the elastic singularity which dominates the plastic singularity. \
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The use of this approach is obviously limited to crack tip plastic zones which

are contained within the field of the elastic singularity.

3.3 Numerical Solution Algorithm

Application of the appropriate interpoclations to the data in egs. (2) and
(3} reduces the integrals to algebraic form. In general, the boundary
solution involves an equal number of known (applied) boundary data and unknown
data. Letting the unknown data be given by {x}, the product of the known data
and its coefficient matrix terms by {y}, and the coefficient of the piecewise

constant plastic strains by [E], we obtain from (2)
(a1{x} = {y} + (E1{P} (6)

Similarly, taking [S] and [D] to be the elastic coefficient arrays of
the boundary data, and [G] to be the elastic coefficient array for the

plastic strain, then eq. (3) becomes
(7} = (s1{t} + (DI{u} + (GI{cP} (7)

The strain superscripts in (6) and (7) refer to total (elastic plus plastic)
and plastic values, while the dots imply that all of the variables are to be
interpreted in terms of their incremental evaluation.

The present BEM algorithm makes use of the Huber-Mises-Hencky yield
condition and associated flow rule. Elastic, perfectly plastic material
response was modeled throughout this study, but the code allows for a multi-
piecewise-linear definition of a general stress-strain curve.

Following the approach adopted in the ADINA code, each increment in total

strain is divided into subincrements (Bathe [8]). The number of subincrements
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is selected to minimize the error in the deviatoric stress change within the
!i strain increment. The stress increment for a given iterate of increment in
. plastic strain is then obtained by an Euler forward integration of the flow
S .
o
N rule, according to
- T NARE
€ CURRENT LOAD Ay
. S
D! EP T DAL
“ (o be{o ]+ (c 1d€ e
. CURRENT PREV (8)
P LOAD LOAD €T
o PREV LOAD
.

In eq. (8), the elastoplastic matrix relating the subincrements in stress

o and total strain is given for plane strain by
a v Sijsmn T

dojy = 2008, 8,0 + 7753 Smnbiy - 20,01+ H/30) %€ mn (9)
2
>

The current state of deviatoric stress, Sij' and second invariant of
!! deviatoric stress, J2, is updated within the subincremental integration of
.. (8). The tangent modulus, H, is taken as the slope of the effective stress-
- effective plastic strain curve, at the current level of effective stress.
o Figure 2 summarizes the current iteration algorithm for the solution of
o eqs. (6,7). The coefficient arrays [A], (S], and [D] depend solely on the
f} elastic constants of the material and the boundary shape. Thus, they are
.. computed once and stored. The [A] matrix is inverted prior to storage. The
. interior arrays [E] and [G] are also dependent solely on the elastic constants
o and the interior element modeling. These are also computed once and stored.
e

Note again that only that portion of the interior expected to be inelastic
o
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need be modeled. The expense of generating [E] and [G] for crack problems
dictates that such limited volumetric modeling be employed.

In the first iteration at a given load step, the plastic strain increment
in Figure 2 is taken from the last load step. The boundary solution then
responds, in an elastic manner, to the increase in loading. Estimated
interior total strains are then calculated. Based on the new total strain
increment, the interior stresses and plastic strains are computed based on
satisfying the yield condition through eq. (8). The plastic strain increment
is then updated in both eqs. (6,7) for a recalculation of the boundary and
interior solutions.

Absolute convergence of the strain solution within each element is
required for the iteration process used. That is, the maximum difference
between successive iterates of the plastic strain correction term (second term
on the right hand side of eq. (6)) is not allowed to exceed a user-specified
tolerance. This tolerance has been selected on the basis of its ability to
relate directly to the amount of the displacement increment. A number of
numerical experiments with tolerances ranging over 10'6 to 1079 were conducted
to test the sensitivity of the results to this value. It was found that the
errors in the displacements, for a simple uniform stress test case, were of
the order of the tolerances specified. A decrease in the tolerance by an
order of magnitude generally resulted in a doubling of the number of
iterations required to achieve convergence. A value of 107 was used for the
notch problem and a value of 10~9 was used for the fracture mechanies problem,
in order to account for the higher strain gradient.

3.4 Numerical Results

The computer program has been verified on two example problems. The

first is a plate with perforations, previously solved by Haward and Owen [9]
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using finite elements and resolved by Telles [10] using the BEM. This example
served the basic purpose of validating the current code and provided a basis
for some numerical experimentat;on. The second problem is a fracture
mechanies problem of a center cracked plate loaded in tension., The plastic
strain results are compared to ADINA results using a singular finite element
model.

The geometry for the first problem is shown in Figure 3. Plane strain
conditions are applied for all three of the analyses and the material is taken
to be elastic-perfectly plastic. The appropriate constants are E = 42. x
103MN/m,, o, = 105. MN/m2, v = 0.33. The one loading condition considered
was uniaxial tension, applied by prescribing displacements at the edges of the
plate section. The piecewise linear plastic strain BEM mesh of Telles is
shown in Figure 3; the FEM quadratic isoparametric element mesh used by Haward
and Owen is shown in Figure 4. The current BEM mesh, using piecewise constant
plastic strains, is shown in Figure 5.

Figure 6 plots the numerical results in terms of the amount of force
required versus the applied displacements. Table 1 summarizes the numerical
force-displacement data. All three model results show excellent agreement,
given the disparity in modeling strategies. The predicted limit load for the
current study differs from the other two by less than 2%. The difference is
attributed to the use of constant strain elements. Limit load is obtained
when the centroidal value of stress in the last ligament element yields, a
condition that will occur below the load for yielding the last physical
ligament ahead of the notch. The plastic zones are shown in Figure 7 for
various load levels.

The current BEM code was tested for a range of load increments in a

deliberate attempt to create numerical instability. The numerical results
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Used by Telles (1983)

i a\ ..‘-l .

et A B B i A K B

Figure 3.
.--;'. "

S

.
.
-—

el

A= " ava"a"
e
AT AL S

Y. € i .- ‘. - . - .. . . fe s B -
)r.. Lm .-.r.-l\} ..n- t.tlLf- 2 Fu -.. . " -u,-x& S . ..-.-. ) L -.. .-'1 -\.-\-ﬁ l.\-, . DA s ...J.\J. '\ .\1 St v. .... . .\-n\-\. ) .-4.;

g

»
|
.
f
.
)
.
s
.



S o
4'-_-.

wTr

v 7w Iw

" WA A P A R S
-
/
7/
7

-
—

ot )
-
/

[ 4
-

Agt St
/
* ot —~—— -
/
/
»

e A
—

w

/

VARKOI R ST TSNS
—pm — e P — e = —P— = -

q. I S - et F. .- ' ........-& e

/

/

-«

Quadratic Isoparametric Firnite Element Mesh

Used by Haward and Owen (1973)

Figure 4.

S
.
« Lo

e
Al a” A

FATOR SN,

v .
e

N

oL

e T -
P ke nad i

R

¢

Ce
taal

S

alal A A

o



a
[

.

LA

s 1. :

A

PR .....r.A P AR
P v

! ‘ ot g riu’{’.‘...ﬁl' )
ARRATA GV LIS

A LN

S e
PR A

AN
AN AN N NS

- v--'-bv\

wo1qodd 93e1d 2udahishiod syj3 Jo s3a[nsay -9 suandiy

SINZWIIVIdSIA JAILYT3Y
0010°0 00£0°0 0020°0 0010°0

_ _ I _ _ I _ _
p+te
v

AQN1S 1NAS3Ud —---—--
SIMaL ———
NIMO ANV dAUVMVH ————

'y
—f

Al
30U04
1v101=4

P - -

00

7777777

.|\.|\I\
—————=cs
(p+e)/4
2! N I Y I AL A TN A R ‘- e T
e e e e e e e e e e e e e e e e e e s « o— fw e w cmmm sy PR ..

000°0 e
00°0 ]

-
o

= \
o

m

00°0¥ i

00°0¢

-
3
00°09
»
2
20 ety 1l RRN ‘ . B L
ey




v, ga, e a0

PRSI
. "

\r\#x..\-u.\r. PO

SIS

L U Ay & Bt A M

>
he!
3
s
73]
43
o
Q
/2]
4]
| &)
.
@
<
ey
=
o—
e
Q
n
je}
[
O
-
+
«
N
Ral
P
'y
|
@]
0
o
=]

BIE

Figure 5.

ol

Y

TR

P gy

SN O
Sadadadia o

-

RENEINT NN

i

-

—~adl

Tadakad

-~

N Ty
alalatelatas

A

ated

alsl

"l‘

te

afadadal

e e
TN AT AT N T e T
RC SRCAE RN K 4

-
o a

N



- J . . g - e —
LA AL S SRR S RN AR N AN L R R N O S TN LN AR NN FTF T IW e Y v e

Cd
)
AN
3 21
X
<) Table 1.
- _. Numerical Results of the Polystyrene Plate Problem
\: -t \.n
~ . .:}.
NN o~
\: LS ..\:.
. PCP - Uniaxial Stretch
:'_: f-:: Load Case Load % Displacement Force a—f—d (x 10-z) F/(a+d)
T (4 x1073) (F) [%]
G
- 1 .50 4.5 10.3576 1.50 34.525
e
¥ 2 .55 4.95 11.3259 1.65 37.753
\l
W 3 .60 5.4 12.2459 1.80 40.820
a £
1% 4 .65 5.85 13.1047 1.951 43.682
4
AN 5 .70 6.3 13.8412 2.10 46.137
S 6 .75 6.75 14.4610 2.25 48.203
. h 7 .80 7.2 14.7765 2.40 49.255 L
2 8 85 7.65 14.9091 2.55 49.697 s
v g .80 8.1 15.0009 2.70 50.003 R
"k 10 .95 8.55 15.0650 2.85 50.217 T
- A,
S 1 1.00 9.0 15.1112 3.00 50.371 R0
% O
: 12 1.05 9.45 15.1412 3.15 50.471 R
- T 13 1.10 9.9 15,1412 3.30 50.471
Y
}'
A v
D W
The ultimate strength = 50.471 MN/m°
:j ‘. a, d defined in Figure 2 T
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plotted in Figure 6 were generated using an incrementation scheme resulting in }_;:i;é
§J a single element yielding at a time. The BEM results required about twenty ?‘}"'3-;
-, iterations per load step to ful.ly converge. The worst case was one load step ::EEE
::’ to the maximum displacement. The solution converged in 45 iterations and iz;-ﬁi
J’-: agreed with the other limit load results within 0.2%. The maximum deviation :’\:;‘
- in calculated plastic strains was 10% in the last element to yield. ': -
i The second example is a center-cracked plate loaded in tension. The ?—)‘4-.
- total width of the plate is 8 units, with a crack size of 2 units. One
N
:3': quarter of the geometry was modeled using ADINA, as shown in Figures 8 and
;ﬁ . 9. Extremely fine resolution of the crack tip elements was taken in order to
. minimize the error in the finite element solution. The elastic stress
intensity factor for this finite element model, using the crack opening
. displacement at the quarter-point node, was in error relative to handbook
- values by about 2%.
= The BEM mesh corresponding to the local finite element scale is shown in
h Figure 10, The elastic BEM stress intensity factor results were
’ indistinguishable from the handbook results. The FEM/BEM meshes were selected
so as to provide about three decades of plotting data in terms of crack tip
distance. The maximum size of the plastic zone was limited solely for
w convenience in the current study. ~ o
Plane strain conditions were used for both of the models. The elastoplastic ‘:\ -
';: material constants used were E=2.037-105MN/m2, cy:3.U52-102MN/m2, and v=0.27. ::_‘:‘}.
The ADINA crack tip model used quadratic, isoparametric finite elements %ﬁ

with nine interior strain integration points. The BEM model used constant
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5 strain triangles throughout. As noted above, both meshes were identical in a\t\frf:'y:
[ P
the crack tip region. The ADINA model used one layer of collapsed quadratic ez
] DR
\' elements adjacent to the crack tip. This approach induces a (1/r) type of O
e e
' 19 -4
! A
N
YRS C A R AN PPN e A W PR IE g W T T e Vol TR VI DA RO Sl Tl T TR e i TORE SRV N T I S R N ST VL T R A ..“\: "
tﬁ'_&-b:?m.ﬁtii}'.‘“"‘-"‘-'"'::"q'*""-'- A S o e i ey N e,




T T T T T B JA TS IR A A SR R W W W L

.“.\.“P...hx G PR EEAR PR AL R o s.....
. LRI . + PR R AN

AN \P- -F. .J&f-r ...... ..r.,.:......-.. (LY A AT S -fb..\.-.\- &-...-. L et e e ..\.

<
[a\}

(@]

(@]

Finite Element Mesh of the Center-Cracked Plate
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Interral Plastic Strain Elements for the Boundary
Integral Equation Modeling of the Crack Tip Vicinity (27a

Figure 10.
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singularity in the displacement gradient within this first layer of

elements. No singularity modeling is used in the BEM plastic strain

P

N - distribution.

) "2 Loading history was identical for both models and spans the range of load

v ,‘." factors of 0.0310 to 0.2075. A value of 1.0 corresponds to yielding of the

N whole plate. A total of 68 load steps was used for both models. The load

i‘ 3 steps satisfy the conditions of Larsson and Carlsson [11]. Simply stated,

.- these conditions require that at most one element becomes plastic at each load =

. '::: increment, and that the load increment should be smaller than 1% of the load
i : corresponding to KImaxzcy"/a‘ The range of load factors has been chosen as

. ' the range to go from yielding the innermost element to yielding the outermost '
SEERN N
- ;::-. element. ::f::.; :
. ADINA failed to converge for the first step until the stiffness E\E:Z
N l reformulation (BFGS) procedure was used. Af‘te.r the first load step (requiring .
,:\'. ’: 20 iterations) the ADINA algorithm with reformulation generally converged with Egs
E d five iterations. The BEM algorithm, using elastic "stiffnesses,”" converged in E?E..

= ten to fifty increments at each load step with the higher numbers occurring at
:‘ the higher load levels. The total computer time for the two models was
essentially the same, although the BEM calculations are cheaper per load

; \-j step. A higher final load level or cyclic loading would yield a benefit to

3 the BEM model, even though the current BEM code is not yet optimized for these

j ":: calculations.

. The crack tip plastic strain distribution results are shown in Figure 11

': \. for two of the computed load levels. The data are taken from points

; - distributed near, but not on, a line at an angle of about 85° to the plane of

» o the crack. This angle corresponds to the line of maximum equivalent elastic

e

’ :::f strain. The jaggedness of the curves is mostly due to the use of triangular

3 .
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. N Clearly, the presence of the underlying elastic singularity field plays an

. .' important role in enhancing the modeling accuracy for crack tip plasticity.

; .. Figures 12 and 13 show the progressive development of the plastic zone up
; :3 to the maximum modeled load. It is to be emphasized that the current study

% - was intended to confirm the accuracy of the new BEM algorithm for

2 - elastoplastic fracture mechanics analysis, and not study extensive plasticity
E i' response at the crack tip. For this reason the current results were not

% y carried beyond the load level shown. There is no inherent limit to the load
e level that can be modeled with this BEM algorithm.

; . 3.5 Crack Extension

5 - The numerical implementation of the elastoplastic fracture mechanics

z a: algorithm in this section report focuses on problems for which the plasticit:
.

.
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elements, as well as to the points having different angular locations. The
data is plotted in terms of the centroidal value of plastic strain. The
innermost row of finite elements has three sampling pcints radially, which
accounts for the smaller radius plotted for these results. The numerical
results from ADINA show a tendency for a spurious peak in plastic strain
increments in the second row of elements. This peak is no doubt induced by
the lack of a singularity-transition element in the current study.

It is significant to find that the numerical results are in such good
agreement. This confirms the accu;acy of the BEM algorithm for piecewise
constant plastic strains. The BEM results do not show the strength of the
plastic singularity as strongly in the first row of elements as do the finite
element results, with the imbedded 1/r singularity in displacement gradient.
However, both sets of results strongly indicate that the plastic strain for
localized plasticity possesses the same 1/r singularity that is associated

with fully developed plasticity for the case of zero strain hardening.
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modified, stress intensity factor in eq. (4) is useful. In matrix form, this

becomes

Ky pp = <R {u} + <> {t} + <M>{eP} (10)
These problems consist of elastic cracks in the presence of plastic strains
due to welding and to yielding of notches,

The first problem was selected to validate the stress intensity factor
algorithm for prior plasticity for any residual or thermal strain field. The
geometry selected is a simple tension specimen with the boundary and internal
mesh shown in Figure 14. The mesh arrangement was selected solely for conve-
nience, as it is used as a portion of a later mesh. The specimen was loaded
to 110% of the yield stress for a bilinear material response. This induced a
uniform blastic strain throughout the specimen.

The next step in the validation of eq. (10) was to introduce a crack,
done along the bottom of the mesh as shown. The residual boundary solution
corresponding to the residual internal strains is computed for the cracked
case by eq. (6). Next, the internal strains for the residual boundary and
internal variables are computed from eq. (7). In the case of the test
problem, eq. (6) produced the uniform displacements compatible with uniform
residual strains; eq. (7) computed internal strains equal to the residual
strains.

The elastic stress intensity factor for the problem was then computed
for the residual boundary terms computed from eq. (6). If there were further
changes in the residual strains due to unloading plasticity, these would
modify the elastic strain intensity factory through the appropriate term in

eq. (10). As required for this simple case, the residual stress intensity
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factor was zero. The residual values in the first and third terms in eq. (10)

. cancel each other to within computer accuracy.

Figure 15 shows the residual stress in a large plate containing a simu-

f? lated weld bead. The weld is simulated by a narrow (b/W = 1/400) strip of
" material with plastic strains equivalent to 100 ksi elastic strains in an

infinite sheet. Both plane strain and plane stress solutions were used. The

7 plastic strains simulate the behavior of material which is heated to yielding
in a confined region, and then allowed to cool. The slight accommodation of

;i the plate to equilibrate the residual, welding stresses is seen in Figure 15.

The BIE/CRX analysis was used to obtain K-solutions for various central

crack sizes for cracks transverse to the weld bead. The only reason for this

o configuration is to be able to compare the numerical results to an exact solu-
tion for the residual stresses in Figure 15.

Il The approach taken is to solve eg. (€) to establish the boundary solution

corresponding to the residual strains. Two triangles were used to integrate

the plastic strains in eq. (6,70); a single gquadrilaterial element would a.so

_'; suffice.
. The results of K(az) are compared to the analytical results using an i
3} influence function approach [12] in Figure 16. The agreement is essentially i
o
S exact, as expected. The volume integral in eqg. (10) contributes the bulk of :fé-
5; - the K-solution, as the boundary displacements associated with the weld plastic Et.
t? fﬁ strains are very localized. %E
The algorithm in eq. (10) is therefore seen to be a very powerful solu- E;_.
ts tion for residual plastic strains for gecmetries without known Green's func- af
- tions or influence functions. Further, by slight reformulations of the volume :
h terms, other volumetric strains such as thermal strains or body force strains =
I; can be analyzed in the same manner. t
N
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An important engineering application of this approach is the calculation
of K(a) for cracks at notches (holes, fillets, etc.) which have plastic
strains due to overloads, or co}d working. To simulate this problem, a bolt
hole specimen was modeled as shown in Figure 17. The plate was loaded in
plane strain to 80% of the net section plane strain yield stress (Fty = 55.8
ksi). Figure 18 shows the progressive development of the plastic strain,
computed by the BIE/CRX program with zero crack length.

An elastic crack was then simulated for a/R = 0.05, 0.50. The
solution, as before, requires an equilibrium adjustment to account for the
crack in the boundary solution (6), and a K-calculation from eg. (10). In
this case, the boundary terms in (10) contributed a significant portion of the
solution.

Table 2 presents the elastic and plasticity-modified stress intensity
factors for the two crack lengths. The approach used is to calculate K(a)
from eq. (10) at no load. Table 2 gives the values of K(a) at no load and
full load through an addition of the elastic result to the no load solution.
The results clearly demonstrate how notch plasticity causes substantial crack
closure (K(a) < 0), thereby reducing the stress intensity factors at full

load. Such retardation effects due to residual stress have been previously

modeled with influence function approaches [13,14].
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! Stress Intensity Factor Results ! C L
“ o/ma sTns
AR

a/R = 0.05 a/R = 0.5 RS

% S
7 Elastic T
- Max. load 3.411 2.070 el

= -~ Zero load 0 0 s
% N,
’ Plastic (Full Crack Surface Nt
- Unloading) i“:,:'_".-
o - Max. load 0.843a 1.7872 {:&._‘5
= - Zero load -2.568b 0.283% Tl
Note a: Maximum load values (elastically) = Elastic + Zero load values :j'.-:;:::j

DR

b: Negative values of KI imply crack closure at positive load \,.‘-

ST
. PRARAN
' The final example considers the effect of crack tip plasticity on crack ro X
}-’_‘ closure. The selected plane strain problem, shown in Figure 10, was o
i R
. WL
previously used to validate the BIE/CRX algorithm for elasto-perfectly-plastic P

B0 NP

. crack tip behavior. Tne plastic strain distribution for this analysis is ;.\_’:
.:\c.,-{

- shown in Figure 11, where a load level of one is net section yield, in plane -:},:;'
3 S
‘-.\-\‘

strain. .-'\_:3-;.;‘

AN

!: The plastic strains in Figure 11 clearly indicate the inverse-crack-tip- TAe
o3 -.:_xl_'.
distance singular behavior expected from the perfect plasticity solution :'.:f

- SRS
- [15]. As discussed in [3], such a plastic strain singularity does not lead to rt;\
W W

. a convergent volume integral for eq. (4). At the maximum applied load (LF = ""*“
‘ S
0.2075), the elastic stress intensity factor is given by: Al:::.:':‘

- .'_\.':-.'
ST

at K .',(..:f-"
L - 108 (11) r.

’ o/ma :::'”:5::
4 RSN
. ‘-._\'

with o = 11,579 psi and a = 100 inches. Use of the full plastic strains from -_"."-}.‘\'
‘. LTS 4
- e
the perfect-plasticity solution at this load level gives an apparent strength T

L3 * v"
a of the elastic singularity (K )
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b . = 1.167 (12) *:3341
\ I .-. “ -./
w . -~ A
The increase in K; usirg eq. (4) substantially exceeds the effect of crack Q}:j?y
~ . PRy
i: tip plasticity on crack driving force that would be predicted using a crack ﬁ;}i'i
' i
- size equal to the physical size plus the plastic zone size. Denoting the 'n4?_i
-:. _:-__:. J,:. J
E e plastic zone size by r, we obtain Tl
L
b 2 ¢
i 5 o
L ‘-: r 5 o] .
b 3 L£.2 Y __.90.03 (13)
4 a 2T \:
... .
e X
) Then the effective crack tip stress intensity factor would be estimated as [ o
-
- K a+r g
eff | —L = 1.015 (14) -
" o/ma
N b
: ALl
. Thus, we conclude that the singularity contribution to eq. (4) is, in fact, ffij:i
R O
- unbounded and the result in (12) is not meaningful. :::aif
AN
! The unloaded solution to the same crack problem involves reversal of the S
~
crack tip plasticity. Figure 19 compares the loaded and unloaded transverse el
.
:} plastic strain (55) distributions along the line of maximum equivalent stress.
At The unloaded plastic strain distribution is much less singular and we compute,
B at zero load
~
-.‘. *
KI
= 0.1 (15)
= o/na
NS
N as compared to the value 0.015 estimated in (14). This large result still
o indicates that the residual strain singularity is still too strong to be

a
At

neglected in using eq. (H4).
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A While the magnitude of (15) is not meaningful, eqg. (4) can be used to ‘: N
C Wy
! ! indicate the relative effect of the residual strains on retardation of crack e
N 1 F:-'.\:-'
R§ - growth., The approach is the same as used in the notch problem discussed DA
WD ‘ o
‘C o~ above. That is, the crack is extended elastically into the residual strz2in ;j}j:
* et
b -~ * . KI :
SRR field, and K; 1s recomputed. The result, in Figure 20, is given as e K
-‘: - )I .r:’:"'
-'_‘. * "-' ES
AN The plot shows almost an instantaneous change of K; at no load to a Iif
o o
ii - negative value. This result confirms the expectation of a retardation effect R
:E if of crack tip plasticity on subsequent cyclic stress intensity factor. The
peak effect is at E— = 0.27, corresponding roughly to some estimates of the
. p r
b plane strain plastic zone size §E; the extent of the retardation zone
X
R is :—- = 3. ":'E\
\:_ P :)"‘.. :
* Thus, we conclude that the volume integral in eq. (4) is substantially ;uj:
Rl
. AN

Ii nonconvergent for the crack problem. The correction would be to delete from
the plastic strains those due to the singularity alone. It is expected that
= the remaining plastic strains can be used to compute an effective stress

intensity factor which accounts for contained plasticity effects.
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4.0 GENERAL SOLUTION PROCEDURE FOR FRACTURE MECHANICS
WEIGHT FUNCTION EVALUATION
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4.1 Weight Functions
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The weight function method is based on Rice's [16] interpretation of

FARRY
LY

Bueckner's [17] original paper. The weight function for a crack problem is
generally taken to be the normalized rate of change of surface displacements
with respect to crack size for a reference state of loading. As shown by Rice
[16], this weight function acts as a Green's function for the crack problem.
That is, the solution to any fracture mechanics problem for the same geometry
but different loading conditions can be obtained from the weight function for
the reference set of loading conditions. The manner in which this is done
will be reviewed in greater detail later in this paper, but the process
involves an integration of the uncracked stress field times the weight
function to arrive at the crack tip stress intensity factor for those imposed
stresses.

The singular advantage of the weight function method is efficiency of
computation of the crack tip stress intensity factor for a variety of crack
sizes and loading conditions. Crack size effects such as finite width effects
on stress intensity factor, or size effects where crack size changes the
applied loads (stiffness effects), need to be included in the weight function.
The new method reported herein addresses the computational problem of gener-
ating weight functions in a direct and efficient manner, while providing for
the first time a general method for the mixed-mode problem.

4.2 Numerical Methods for Evaluating Weight Functions

The weight function method discussed herein excludes the related, Green's

function method for stress intensity factor evaluation. In the Green's

function method, many of which are given in Rooke and Cartwright [18], the
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stress intensity factor for the reference problem is given in generalized
terms as the response to a point load on the crack surface. The point load
solution is then integrated as a weighted integral of the applied tractions.

While the Green's function and weight function methodologies are closely
related, the computational approaches for the two methods are distinect. The
current paper focuses on the numerical evaluation of surface displacement
derivative evaluation to establish the weight function. The approach is based
on the boundary element method for two-dimensional fracture mechanics, as
first developed by Snyder and Crﬁse {1], enhanced and corrected by Cruse [2],
and most recently used for elastoplastic fracture mechanics modeling by Cruse
and Polch [3]. In these reports the general BEM is implemented with augmented
boundary integral equation kernels which explicitly include the presence of a
stress free crack.

Most numerical methods for the development of weighﬁ functions are based

on the boundary integral equation, Besuner [19], or finite element methods,
Parks [20]. The boundary integral equation solutions (now referred to
generally as boundary element methods) have been based upon numerical differ-
entiation of the numerical results. That is, the crack surface displacement
numerical solutions are obtained for two slightly different crack lengths.
The finite element method was modified by Parks [20] to include in the virtual
work principle an explicit derivative with respect to crack size. This
permitted the FEM-based approach to be more efficient than numerical differ-
entiation. This approach has been exploited to a great extent by Sha and Yang
[21].

A second approach to the numerical problem is that proposed originally by

Paris, McMeeking and Tada [22]. In this method, the weight function is

computed for the problem of cracked body subject to the elastic singularity
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tractions on a small circular path surrounding the crack tip. While most of
the results were obtained using the FEM, Cartwright and Rooke [23] used the
BEM to obtain very satisfying numerical results. Others, e.g., Grandt [24]
and Petroski and Achenbach [25], have developed very efficient means of
estimating weight functions for a limited number of specific geometries.
4.3 Formulation

A general purpose numerical evaluation of crack surface weight functions
has been developed based on a novel use of a specialized boundary element
formulation of the two-dimensional fracture mechanics problem. The following
sections will present two-dimensional brief definition of crack surface weight
functions, their use, and some of their potential limitations, followed by 2
review of the new method. The basic references for these discussions are Rice
[16] for the weight functions, and Cruse [2] for the boundary element
method. The general weight function approach of Bortman and Banks-Sills [26]
will be followed.

4. 3.1 Crack Surface Weight Function

Consider two solutions for the specified geometry. We will call
solution state -(2) as the unknown solution, and solution state -{(1) as the
reference state. Both solutions consist of stress and strain variables on the
interior of the body, and tractions and displacements on the surface. The
reciprocal work done by the stresses of solution -(2) on the strains of the

reference state is given by*

u; ds + % o [ 4 ul av (16)

*Superscripts should not be confused with powers in this section.
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t - The boundary integral consists of the tractions tf and the displacements u%
m for the two solutions; fiz is the body force term. i_(\»\
« ‘e -
4 RN R Y
; Consider next the virtual extension of the crack for the '::i:;“
| SRR
: KN reciprocal problem. The tractions that are released ahead of the crack in 3q;}~
N
2 st
L] (16) are singular with the usual inverse square-root behavior. The -

displacement term in (16) is proportional to the square root of crack tip

L e o e

distance. A reciprocal energy release rate can be computed in terms of the
mixed-mode stress intensity factors (KI’ KII) for the two solutions. Letting

H=E/(1 - v2) for plane strain and H = E for plane stress, we obtain

Wl wl

1
——-dS+£-a—a—uidS (17
t u

The boundary has been divided into that part for specified tractions (St) and

that for specified displacements (Su)' The body force term in (17) has been

dropped only for simplicity at this point. Since state -(2) is general, we

can compute equation (17) for another general (and independent) solution. The

reciprocal strain energy release rate in (17) then gives

au1 at2
3 13, 3 %% i1
KT + Kip KIp) = g t] 55 95 + g 33 Y S (18)

t u

11
g (K

Combining equations (17) and (18) we can solve for the stress intensity

factors for the arbitrary problems in terms of the solution of the reference

problem
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2(K) S S .
t u
1 2
3u, at;
k% [ —Las+ [ —Lul as
I i 3a 3 i
S S
t u
: 2 _ 2,3 2 .3
where (K)* = K] K71 - Kp K{ =0 (20)
In the case of symmetric loading, equation (20) reduces to
1 2
u, ot
k2 - 2 Lgs . [y as (21)
I 1 1 3a 2a i
2K S S
1 t u

This is the same form as developed by Rice [16] except for the introduction of
mixed boundary conditions. The solution approach using weight functions is

normally given for Su = 0 such that

1

du,
k[ e2Las-[e®nlas (22)
2K S a S '

where hi(S) is the weight function. For the mixed boundary value problem, no
simple weight function can be written down and the full form of equation (21)

has to be used.
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E; solutions in the BEM, The asterisk on each of the fundamental solutions

h denotes further that they represent the solution for the point load in an

ff infinite plane, contaiping a single, traction free crack of length 2a. The

o surface S in (24) does not include the crack surface, as these boundary condi-
g tions are automatically satisfied by the special Green's function or funda-

:;E mental solution used in this formulation.

) The weight function method requires the solution in terms of the
5; rate of change of the boundary conditions, as a function of crack length.

5 Differentiation of (23) with respect to crack length is completely straight-
T forward, due to the explicit dependence on crack length of the kernels of the
f integral operators. Thus, we obtain the following boundary identity
e R e o e o i i
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Thus, for the general weight function method, one needs an
efficient means for solving the reference gecmetry fracture mechanics problem,
subject to any fixed displacemept or compliant boundary conditions, to obtain
the rate of change in boundary displacements and tractions, and the crack tip
stress intensity factors. The fracture mechanics BEM provides the most direct
and efficient means for providing this data in the appropriate manner.

L4.3.2 Boundary Integral Equation Formulation

The boundary element formulation of the two-dimensional fracture

mechanics problem is restated for completeness in a shortened notation

P %
w2+ [ TudS=]Utds (23)
S S
where the physical variables are the boundary displacement and traction
vectors, u, t. The kernel functions U, T in (23) are the displacement and
traction (on S) solutions to the elasticity problem for the infinite plane

subjeet to a point force loading; these functions are known as fundamental

4 I e S 0 N 1

AL DA Sl Ny '::.3_2:3

hra
YW

8,

., 0, n
e
)

a2

o

u - g
Al
-‘v‘.,

e g PRI
» ¥ ’
» et .
LA St .
el .
'y s e *
1 L AL
JEO PG

» e
n' A,‘
VXN A

*y
I =

S

1

&' ‘.' ‘.' ‘.' 'i' ':‘ ‘; ‘s, :
RPN
Ay alalale)e

R XANAE

«




WSS

AR |

oy

* *
*S: - E waes [ pas (24)

S S S

The boundary has been denoted as S = Su + St to denote the notions of both

displacement and traction boundary conditions on portions of the surface. In

general, the mixed boundary conditions involve somewhat more complexity than

is denoted by this notation, but the terms in (24) convey the essential notion

of the algorithm.

Letting the vector x correspond to the unknown boundary conditions

{both traction and displacement components), and y the known boundary condi-

tions, a symbolic form of (24) may be written

g%u/ea

(4] (?t/aa

= [Al{x} = (dB/da]{y] (25)
Equation (25) is oStained from (24) by the imposition of a boundary interpola-
tion system. In the current application, the boundary data is assumed to vary
in a piecewise linear fashion, with %, y representing nodal variables.
Equation (25) is very similar to the discrete form of the BIE (23)

which is solved to obtain the unknown boundary conditions for the reference
problem. Specifically, A is identically the same as for the boundary value
problem. The right-hand-side of (25) is made up of the derivative of the B
terms with respect to the crack length, and y is the totality of boundary data
from the solution of the reference problem, equation (23).
Thus, the algorithm for the solution of (25) consists of

1. setting up the discrete form of (23) to obtain A,

2. storing A for later use,

3. solving for the unknown boundary data,

......

51

B S S AR . o, R W A i S A R U R L G e T Y

I LV’.VWI"L"’.‘T\".V.V_'..’V:V\‘}

<
.

[y s
t B
XX

%

2

ay
(RS

P AN X 4

%

.
.
.
]
b"
N
-

v
' 4 *I"tr;u
,I
<‘_n_l.l

e,
. ‘“&,"," "l .%

S
oy
2 "A .‘_ .

§ =
LS

T

5 4,
e
el

i
Ah..

'r‘r"‘r.:; Ay
s 'v:l‘ﬂ'

s

YL T s v
A F'.(\{.f'f'

"'.‘"..' e

jféif;i.

KA,
NENTSTAAN

-

'A "‘ )'

{l

%

% 27
P 953

*»
RN
’
{'c"h
2 v 7

L}
[N

S
4

R

A hJ :l’

(4

-

.
NS
e

‘ala

-"
JoL}



) ey
2 52 £240
b L
e
oo
N N
2 , A
4. computing the elements of [dB/da], e
By oo
u 5. solving (25) using the entirety of the boundary conditions b
RS NS
~ The solution to (25) consists of the change in all non-specified '.;-i_\ﬁ;
- . D
l. A d‘ 1
F boundary conditions, except along the crack surface. This is so because the ;}‘:’
. o
o
- special Green's function used for the fracture mechanics solution automati- "
O e,
i cally satisfies the crack surface conditions, and the crack surface is elimi- ;f:}_'.'-'_:
» ARRa
A Sl
oo nated from (23). The complete solution therefore requires an additional step Selel
S« P 4
. o ‘e - "
before the full weight function can be defined. LTJ
L el
R The BEM is based on the so-called Somigliana identity for the ;:"'J
) !
~ interior solution variable, which in this case is the displacement variable. f_‘:’J
. RSN
— vl
' The derivative of the interior displacements corresponding to the boundary L
T solution to (23) is given by : ,':'
L D
< . . T* * ':j‘
_‘ wsa=- )T Hase o as- (2L ygss 28 ¢gs (26) b
- ’3a 3a 3a 3a L
S S S S S
» s
b e
N Equation (26) is equally true for interior points or crack surface points, ,’;:::
o e
. although care must be exercised in the evaluation of the kernel functions for 'L
. crack surface points. The numerical solution of (26) completes the weight N :_l:
S :.__ -
< function deseription, in a formal way. That is, by specifying a suitable num- :'.j', "
Py ber of crack surface locations, the analyst is given a complete description of ‘r'c"
. ) N
o S
‘ the rate of boundary condition change with respect to crack length, as needed ,\:_:::;
. ,\‘.fw_.:
;\ in equation (21). However, the term from (26) for the point at the crack tip :.S"
is singular and requires special treatment, as discussed in the next section. i‘g.f:;
-~ o
. 4.3.3 Crack Tip Stress Intensity Factor ::f;:
1'\-?"1
Lt
s One of the very important features of the fracture mechanics BIE _','.:"'\-:
SO A
A solution is direct access to a very accurate and generic algorithm for eval- Er;v:-
y .
. N uating the crack tip stress intensity factors for mixed mode response. This -
"
L L e e e S R T e e e e e e T e e Tt T e e S st e e e T e e e e
NN PN I AN DTN DN TSI ;IIL‘.;:';:‘:'\;'_}\{ PPN ‘.{‘;.':'.'-‘\.'".J'.{'\;-'.';".r.'1.‘.:'.--'.-\.:':")\".-".r\.-_‘.a:‘.h:._\- : \
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o algorithm has been previously discussed and requires only that the following E\.
3 -l
: Lt
) . integrals be evaluated for some path in the cracked body .
A :*-::\-'f:‘
. K =-[R _uds+ [L . tds (27) e
j x 1,11 £ 1,11 £ I,II. RCON
~ ~
. \_. R LY
" B0
.- The complete traction and displacement solution needs to be specified on some e
At B
N .~:. "_‘-"\"
B path, and the original surface (excluding the crack surface) is usually j.‘.-f._\:
ol selected. However, as discussed in Cruse [27], the algorithm is independent :Z:j:i:f_
-~ Sund '{ '.-.‘
of path and has successfully been used as a post-processing algorithm even for e
A .'-_.:‘:.
NERN finite element models. oy
| *e .._:.e:..
\ . .
o The weight function algorithm also involves the direct computation f.'\
Y f‘ '.‘.-‘_.
L of a crack tip singularity. Taking the free term in (26) to be evaluated near "-'pi:
" - A
. K A ‘).
N - the crack tip, it has been found that the kernels contain an explicit, square- -'.,::-'&_
N e
- root singularity. As in the development of (27) we take the integral identity :f-:_::;.
: "-f.l
- i (26) for points near the crack tips (either end of the crack), multiply by the "
1Y
N square root of crack tip distance and proceed, in the limit, to the crack tip.
N
N A non-singular form of (26) is then obtained N
- g‘ P
- Lim = 3u _ o :~_.‘;_::: :
: . 0 T3 =S1rc gTu ds + é‘ Ut ds (28) R
o -:. bz:':;\
0 * * e
_Lim - aT _ Lim - au ——
— where T="0 "3 VY=, "3 (28a) S
L RN
¢ E: These terms are directly related to the stress intensity factors found in :_":::‘}‘:
. KRR
3 (27), but are derived from a completely independent basis. Thus, they provide E}?
e St
.y A
N a validation of equation (25) by comparison to the results from equation (27). \,‘;"
. RERe
: < Having the explicit, limiting singularity strength provides the analyst with a »:£:$
g complete description of the weight function for the reference problem. wr
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L.4 Applications

The applications given in this paper are limited to validation examples
for the computational algorithm.that has been developed. No effort to compute
stress intensity factors from the BEM-developed weight functions will be
given, as these are covered adequately in the references given. The following
sections will present a brief description of the computational implementation
of the BEM-weight function algorithm, two numerical examples of interest, and
some conclusions based on the work done to date.

4.4.1 Programming

The BIE (23) is first formulated, making direct use of the defined
boundary conditions to assemble the matrix for the unknown boundary data. The
right hand side vector is assembled from the product of the kernel functions
and the specified boundary data. The coefficient matrix is stored on tape for
later recall, and the system of eguations is solved by reduction. The full
set of boundary data is then completed and the ccefficient matrix recalled.
The new right hand side vector is formed from the matrices resulting from
differentiation of the standard kernels, with respect to crack length, times
the full set of boundary data for the reference problem. Re-reduction of the
same matrix then results in the set of boundary data corresponding to rates of
change with respect to crack length. Mixed boundary conditions and mixed-mode
cracking problems are handled directly.

The next step is to compute the crack tip terms at one or both of
the crack tips and the rate of change of crack surface displacements with
respect to crack length. The same matrices as used for the boundary terms
above are computed for the points located on the crack surface. These points
are inout as percentages of crack length, and are taken to be on the top sur-

face of the crack for symmetric problems.
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4.4.2 Numerical Examples

Two example reference problem calculations are presented which
illustrate the essential numerigal capabilities of the weight function
calculation procedure. The first is more in the way of a validation example,
as the problem considered is a simple square plate with a central crack,
Figure 21. The plate is loaded in simple tension transverse to the crack as
shown; this loading results in Mode I response of the crack. The crack sizes
range from a/W = 0.01 to 0.5.

The smallest crack size is essentially equal to the infinite plate
problem. The computer code calculated stress intensity factors for each case;
for the short crack case the accuracy to the infinite plate result was to five
significant figures. Figure 22 plots the normalized crack opening displace-
ment derivative results for the four cases. It is seen that in all cases the
resulting distribution is quite smooth over most of the crack; the finite
width effect is seen for the cases of a/w > 0.1. The normalized crack tip
singular behavior is also seen in Figure 22 to be essentially identical for
each of the cases. The stress intensity factor computed for the crack opening
displacements, using equation (28), was essentially identical to the
previously exploited algorithm based on internal stresses, equation (27).

Figure 23 shows the BEM mesh for the second reference problem
considered in this study. The problem is a plate with a central hole and an
edge crack from the hole. The mesh was established in a manner that repre-
sented mixed boundary conditions, as the left-hand side is taken as a plane of
simulated symmetry.

The crack is taken to be located at the horizontal symmetry line,
extending from the edge of the crack. It is to be re-emphasized that the BEM

algorithm being used does not model the surface of the crack, as this surface
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:: is explicitly and exactly accountecd for in the formulation of the integral Rl
. ' equations. The plate is taken to be sixteen units long, with a width of eight k_:
; s
N units and a hole radius of two units. ,.‘_:ﬁf-
. . : F'\":..
N Figure 24 plots the computed stress intensity factors for five ::'.':".':
[~ NN
! L crack sizes (a/R = 1.5, 1, 0.5, 0.25, and 0.05). The stress concentration : .
E
S factor for the hole is computed to be 3.59 versus the value of 3.54 from -
<o R
= _j Peterson [15]. The stress intensity factor for an infinitesimally short edge T
,I_ crack at the hole is then given by —
) o
:: .:;' KI = 1,12 KT o v/T1a (29) ‘::‘ .';'
PJ S,
AR Mo e
: - The value of normalized stress intensity factor in Figure 24 for N
e BRAIN
';: a/R = 0, therefore, is 3.98. The stress intensity factor is seen to decrease :.}:.‘;-;_
o AT
_! . with increasing crack size for short crack lengths due to the effect of the o
;: v stress gradient. For longer crack lengths, the values are seen to begin to
s v
::: o~ rise, as would be expected due to finite width effect. The second curve in
! .' Figure 24 simply normalizes the stress intensity factor such that the value at v_-.
- Lot
. a/R = 0 is zero. j,-.‘\':
N e
;; Figures 25 and 26 present the numerical results for the normalized (':_'.":
3 . i
S weight function for the Mode I reference problem. The results in Figure 25 RAGG
T f'.;-'._\'
R AL
R are essentially of the same shape as in Figure 22, although the zero intercept -:::-:3:-:
s 53
o is elevated due to the free edge effect. Also the order of the curves is ﬁ?u“
> .
. affected by a/R. Figure 26 normalizes these results by the numerical results .?}_,_ .
L NN
- for the center cracked panel (a/W = 0). The case for a/R = 0.05 clearly shows f;}_‘j:-
" . - .-"'
~. AN
RS the influence of the free edge effort for short cracks while the others begin ';%:
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5.0 BURIED CRACK ANALYSIS WITH AN ADVANCED TRACTION BIE ALGORITHM

Cid

5.1 Introduction

S

The algorithm for analysis of buried cracks of arbitrary shape, presented

9 in this section, is a part of a bigger code. The ultimate goal of the
- principal code is a solution of an arbitrary surface crack problem. The
53 alternating boundary traction method (Nishioka and Atluri [28]) is used to
' this end. Both the literature and our experience show the efficiency and good
; :5 convergence properties of the alternating method. The accuracy of the
;: solution of a buried crack problem, being the main part of the alternating
‘ method algorithm, plays the most important role in the accuracy of the overall
;i results.
. . The problem of a buried crack with arbitrary geometry has not been solved
_. satisfactorily. Nishioka and Atluri [28] used a solution based on Jacobi e
Lo potential functions for the elliptical planar geometry and polynomial .Eg
- loading. Weaver {29] used a dislocation model to solve the problem for the ;Eé
!! case of the rectangular crack. Using the same dislocation method, Bui [30] {
: k presented a solution for an arbitrary geometry, but with poor accuracy. The
Z :f accuracy of Bui's method has been improved by Putot [31], albeit with certain
v :; artifices. The current work, reported herein, removes these limitations and
; R deficiencies by a successful combination of quite well known numerical
; :5 techniques.
- 5.2 Mathematical Statement of the Problem
I: 3’ The problem of a loaded crack in an infinite three-dimensional body can
; ) be mathematically described by a set of integral equations of the first kind
A - for relative crack opening displacements Vi* in terms of crack surface
E i; tractions o, .
;T
N R R e S R I S R
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013(P) * Ta(1-v) [ [ r‘2 + (1-v) rz ]dS (30) ‘:__.'-_{;

<r> . .

? E(‘_}.:?.:

~ Y Vg g2 (Vo 17Vq )0y ( :

‘A s s—— —_— - RVASES

& °23(P) = IO [ 1 2 + (1-v) |as ¥

T P .

‘o P

. R S

- v . '_-.1_ <

- R '-."L"'

RORAESY

= ey

,;. ; where :: 4:.‘?:.

! AR

> 3 :.'_
= r2(P,Q) = & (x(P) - x(Q)2 ; v. = v. (Q) g
. ’ _ 1 1 ' i,a i,a -

i=1 !

e <r> denotes integration over I' in the Cauchy Principal Value sense.

Jad

This well-known set of equations (Weaver [29]), Bui [30], Cruse [27])is

Ly
RS

herein called the Traction Boundary Integral Equation. The Greek subscripts

ted
Vs .

apply to the in-plane directions defined by the normal direction, X3. This “:u‘»;

set of equations is derived from the Somigliana identity for the internal -,"'5‘.,-“.
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stresses in a body with the crack (Cruse [27]). An important feature of this
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b‘“- )
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v
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N representation of the physical problem is that it decreases the dimensionality

%
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of the problem from three to two, the eguations extending only over the two-
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An important aspect of the set of equations (30) is the presence of

principal value integrals. The evaluation of principal value integrals
usually involves specizl treatment of exclusion circles for singularity.
Proper handling of this practical problem requires continuity of displacement
gradients (crack surface strains) between the elements. If the continuity
condition is not satisfied, certain artifices have to be used to contain the
error (Putot [31]).

5.3 Current Numerical Method

In the current numerical method, we use a finite element interpolation
scheme for the unknown displacement discontinuities at the crack surface, and
their derivatives. 1In the following, we will use the term "displacements" for
"displacement discontinuities" for brevity. The finite element interpolations
produce undesirable discontinuities of displacement derivatives at boundaries

f the elements unless higher order derivatives are used as nodal quantities.

A special interpolation procedure is used to remedy the problem. We
model the displacement field on the crack surface using quadratic 8-noded
isoparametric elements, and the displacement gradient field using linear, 4-
noded isoparametric elements. The relationship between these two
interpolations is established by the following schemes.

The interpolation of the displacement discontinuity field on a crack is

given by the relation
. oK kK_.K k
v, (P) = bu,(P) = N (P)Aui =N"(P)vy (31)

where
k = 1,n
P = point on the crack surface

n = number of nodes of 8-noded element meshes
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We will call the displacement interpolation mesh using the 8-noded element the
N-mesh in the following discussion. Differentiation of vy with respect to the

global variable X, will provide the in-plane displacement gradient field

v, k
i 3N k _
5;;(P) = gzz(P) vy (a=1,2) (32)

<
2]
—~
sl
N
"

This field will be, in general, discontinuous at the element boundaries (as
the stresses and strains are in standard finite elements).

To find a continuous displacement gradient field corresponding to the
original displacement field, we will create a new mesh of linear 4-noded
isoparametric elements, referred to as the M-mesh. This new mesh will

interpolate displacement gradients on crack surface according to the following

_wmd J '
vy Q(P) = M (P)vi . (33)

b b

where

J T,m

m = number of nodes of UY-noded element mesh
The nodes of the M-mesh will coincide with those of the N-mesh and with the
centers of 8-noded elements in a manner shown in Figure 27.

We will find the nodal values of displacement gradients by minimizing the
difference between the two interpolations, (32) and (33). The difference
between the interpolations on the whole crack surface (indices k,j running
through all nodes of the crack model) can be written in shorter form
as Eia where

aNk

py - 90
Eiu(‘) - axa(P)vi i,a

(38)
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Using the Galerkin weighted residual process, with the same weighting

functicns as the displacement gradient interpolation shape functions, we

obtain the following

[ E-Mds =0 r=1,m (35)

Substitution of equation (5) results in

K .

i AW, Kyys - [ My, IM"as rz1,m (35a)
3x i i,a

S a S

or
Jur | ¢ p K

[MMas - v, e [ o Mds -, r=1,m (35b)

3 e 5 %%,

The matrix representation of equation (35b) takes on the following form

[MM]{vi,a} = [NM] {v,} (36)
where
[MM] = square matrix of dimensions 6m x 6m with MMjr = MIM"ds
S
an®
[NM] = rectangular matrix of dimension 6m x 3n with NMkm = S Y M'ds
S Ta

{v. } = column vector of nodal displacement gradients
(dimension 6tm x 1)

{vi} = column vector of nodal displacements
(dimension 3n x 1)
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Matrix MM has the same structure as the finite element consistent mass matrix;
clearly, MM is positive definite. Nodal values of the displacement gradients

are then calculated by

(v; o = Do) ] vy}

This process very closely resembles global stress smoothing used sometimes in
the finite element method, Hinton and Campbell [32]. Since MM is positive
definite and has a strongly dominant diagonal, its inversion does not present
any problems. In short, the global relationship between nodal displacement

gradients and displacements can be written as

(v, o} = Daw] (v}

where [MNM]. 3n * ) [ M)

The numerical solution of the traction BIE, equation (30), uses the
collocation method to form the equivalent system of algebraic eguations for
the unknowns. Since the displacement mesh contains n nodes with three unknown
components of displacements each, we take these nodal locations as collocation
points.

The continuous representation of displacement gradients given by (38)
allows for very easy and natural treatment of the principal value integrals
appearing in (30). It can be easily proven that the basic component of all
integrals in (30) vanishes as the radius of an exclusion circle r. around the

source point P goes down to zero, viz.

r,B(P,Q)

2

(o ds(Q) = 0
E*O I'E ’ r (PqQ)

I, (P) =Lim [ Vv, (Q)

1aB
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Discretization of the set of equations (30) with the interpolation scheme

(33) at n collocation points gives the following system of equations

i=1,3
[vw] - {v. } = {o,.} a = 1,2 (40)
i,a 13 ] = 1:3
where
[vv] - 3n x ém array of coefficients

{vi a} - 6m x 1 column vector of unknown displacement gradients

{013} - 3n x 1 column vector of known surface stresses (tractions)

This underdetermined system cannot be solved directly for the displacement
gradients. To reduce the number of unknowns, we use relation (38), thus
changing the unknowns to displacements. We obtain

(vv] - [MM] - {v;} = {o (41)

13}

[vk] - {vi} = {og5) (42)
where
[VK]3nx3n = [vv][MnM]
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is the final array of coefficients. System (42) has 3n displacement

components as unknowns and 3n equations formuiated at n nodes of the

e

displacement mesh. It can be solved by any convenient numerical technique

A

,l,'?‘,.‘r‘i

after application of displacement boundary conditions (43) at the contour of
crack surface
v, =0 (i = 1,3;k = node numbers) (43)
The structure of the system of equation (42) shows that (for the current
formulation for plane cracks) the problem may be separated into two separate
systems of equations. Crack opening displacements are not coupled through the

equations with in-plane displacements; thus the system effectively splits into

two separate systems of equations

o«
P

2

2

[VKA

.
nn
—_

IR B N (43a)

n

"l
N .

y

> r
L
a v

Iﬁ
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(43b)

",
1
1

[VKZ] * {V3} {033}

-"

?¢53:&ﬁ

s

s s

This property allows for greater efficiency of numerical solution-systems of

L

equations for separate sub-problems are smaller than the full system. The
decoupling of the system is used in the computer implementation of the
method. After solution of system (42) the displacement gradients at m nodes
of the linear element mesh can be obtained using equation (38).

Stresses at any location of the infinite body due to crack loading
(except for the crack surface itself) can then be obtained using formula (44)

0,,(P) = - f S, 14(P1Q)v,(Q)dS(Q) (b

r
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The kernel S, .
lia

the displacement interpolation (31) on the N-mesh.

is given in Cruse [33]. To calculate integral (44), we use
Integral (44) presents no
particular problems, since it i; a proper one. Higher order numerical
integration is only necessary when the source point p is located close to the
crack surface.

Stress intensity factors at nodes of crack front are calculated using the

formulas of Bui [30]:

(45)
8(1 -v )

I 8(1-v )

Vi

§(1-v)

/_\
K,. = —Z—lE—— J/r_ﬁ (u6)
/_—1

7§

(47)

where vy is an opening displacement, vip - an in-plane displacement component
normal to the crack front, and Viry - an in-plane displacement tangent to the
crack front. The above displacements are for the nodes closest to the crack

front, their distance to the crack front being d.

5.4 Results of Computations Using Original Algorithm

The computational algorithm presented in the preceding section was used
to solve the problem of the penny shaped crack under two kinds of loads:
constant pressure and constant shear. Three different meshes were used
(Figure 28). All the meshes used quarter point element modeling for the
displacements close to the crack front (which results in O(v/r) variation of

the displacements as a function of distance r to crack front). It is

‘-.-‘.-.'-.-. ~ o ', " --------
s\ e T I

73

\ .~

iﬁﬁ{?“
Yh
Ly

"i

3

s
/‘v,'\ Y
Wl

L
b N
Ay
R

:
Tt
s
>,

-4

AT Ay
LA DA

Ly
0



ORI AEALATCLS - (A
AR AR e e ﬁbb??%&

.11\\
- 1y -
ﬁ‘.... .

PR AR R . P . T D
"\ A . P -.n.-.vntst., A -
N o, : ?ﬁ\.-\f-\n.\..\.-\-\ V\K w- . -.4“-.-..\.\ .-Af 3 Lo .

Il

y
A

AN
N

w",'

- ~A‘

EREAS
bW

PRI
-

-
™' »

s A e N -

P T A Y DN

N

R

h\ -.‘ u.. \\

NN
ANRTANNPIRY

=
.

DR I

N
- «
" Y

-

Three Interpolation Meshes Used in the Stucy

.
q
N
FRERE
AY

T

Figure 28.
S

o
“w

(RN
oy

4
Y \
NN
TR

.

A A
» Nk
E ... g
- ‘e .\-\
Y AL fnn RS N RN NS S R R T O 0 R o A o N TN S S S,

b AN YN ¢ sl



.
Il .

P

Gag

~

Tl

S0
Y,

v
Nk
I

.

important to point out, though, that the asscciated displacement gradient M-

mesh did not have the O(};) singularity. The resulting crack opening
displacement patterns in the radial direction along with the exact Sneddon
[34] and Segedin [36] solutions are given in Figure 29 (z displacement due to
pressure loading) and Figure 30 (x displacement due to xz shear loading).

It is clear from the figures that the results depend very strongly on the
mesh used and exhibit a strong oscillatory character. The accuracy of results
i{s clearly unacceptable (17% to 25% error in all stress concentration factors,
similar order of magnitude for maximum displacement errors). It is
interesting to observe, relatively, that the best results were obtained for
the most uniform mesh: the smoothest of the three displacement variations and
17% error in stress concentration factors.

Stresses in the crack plane were calculated for all three solutions.
Consistently, they showed the same order of accuracy as the crack opening

>displacements. Again, the best results were obtained for the uniform mesh;
the errors displayed the same behavior as crack opening displacements - the
biggest errors were nearest crack front, the smallest away from the crack.

One very clear feature of all results was observed: consistently low
displacements and stresses (as compared with exact solutions). The reason for
this behavior was ascribed to finite (not zero) compliance of crack front.

One way of assuring more physically appropriate behavior of the numerical

system was to implement the singularity of displacement gradients in the

viecinity of crack front. Intuitive reasoning would suggest this as a way of ;

building in more compliance at the crack front, increasing the overall level i

of displacements and stresses. -
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5.5 Analysis of Method's Equations Using Exact Solution

Poor results of the method provoked extensive investigations of the
sources of errors. The simplest check of the numerical accuracy consisted in
the substitution of the obtained displacements into the system (42) and
calculation of the right hand sides. It revealed no apparent numerical
problem.

Further investigation into the problem used a known (Sneddon {34])
solution for a penny shaped crack to check the accuracy cof various matrices
used in the numerical method. First, the accuracy of the interpolation matrix
MNM was checked by post-multiplying it by exact displacement pattern to obtain

"semi-exact" pattern of displacement gradients (48)

s.e. = [MNMlivi}exact (48)

vy o

i,a

Comparison of the semi-exact displacement gradients with exact ones
predictably showed the biggest errors, on the order of 10%, at the nodes
closest to the crack front. Errors at the very boundary were cbviously
incomparable (the exact solution being infinite while the semi-exact is
finite) due to the simple linear displacement gradient assumption used.
Errors elsewhere on the crack surface were small (<5%), indicating the
adequacy of the displacement gradient model for the regions without
singularity. Overall, the results of this test showed the local importance of
singularity model of the crack front.

The second test, on the accuracy of traction BIE matrix VV (equation

(U0)), consisted of subs:ituting both the exact and semi-exact displacement
gradient patterns into eguition [ " and checking resultant right hand

sides. Since the exazt sciut.o s irfinite on the crack front, a very large
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number was used instead for the nodes on the boundary. This test revealed the
global importance of crack front singularity as all of the equations displayed
very large right hand sides (consistent with the large number used for
infinity at the crack front).

Ensuing rigorous analysis of the system of equations (U43-43b) proved that
in fact the influence of the crack front displacement gradients was present in
all of the equations of the system. Even though the equations corresponding
to collocation points on the crack boundary were deleted as a part of
accounting for boundary conditions, the information about the magnitude of
crack front displacement was present throughout the system. The experiment
with the semi-exact displacement gradients showed comparable order of errors
of right-hand sides as displacement gradients themselves. The most important
conclusion of this test was the global importance of crack front singularity
modeling.

5.6 Crack Front Singularity Implementation

It is very well known that displacement gradients are singular at the
crack front much as the stresses are singular ahead of the crack (order of
singularity O(};)). This kind of singularity may be modeled effectively by
so-called quarter-point elements, quadratic isoparametric finite elements with
mid-side nodes moved to a quarter side length location. In the current
application, these elements may be used only for displacement modeling since
the nodal variables for these elements are displacements and the singularity
is desired in displacement gradients. For modeling of the displacement
gradients, the explicit singularity had to be used in conjunction with
slightly modified linear shape functions.

If we consider a one-dimensional quarter point element, the displacement

derivative singularity has the form (Henshell and Shaw [36]).
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This expansion allows for very accurate modeling of the displacement gradient
pattern resulting from the elliptical displacement distribution. The same
variation of displacement gradients was thus assumed for both pairs of 4-noded
elements. The resulting shape functions for these elements had the form given

in egs. (50) and (51):

Element adjacent to crack front:

/ 5 ‘l+52
M1(E1€2) = E(T + 51)(1- > )

148
_ 2 2
M2(£1£2) = /(T:E;(1'51)(1' 5 )
(50)
-1
My(5,8,) = 5 (1-8))
M (E.6.) = = (1+E,)
yl&q8y) = 5 tixgy
Element of the second row:
5-3¢
- /2 1 /.72
5-3¢
- 2 1 /772
Mp(8485) = /g (-85 /)
(51)
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Y, In the above, an assumption is used that the quarter point elements are Y
"/ ;':‘\. q
' employed for the first row of elements adjacent to crack front. Since the f"f‘_'{
- A
shape functions (50) are unbounded and both sets are nonlinear, the standard t-:::.:‘;
L Galerkin procedure for calculation of nodal displacement gradients was proven :_::.‘_:.‘
- BT
- to be ineffective and the collocation method was used instead (only on guarter .
~ NN
point elements). ada
._.\]2:
. iy
- The effectiveness of the new, mixed method for displacement gradient %;_':5
P \-.\‘.‘
interpolation was tested on the mesh of Figure 31. The elliptical —
.. e
’ displacement pattern was imposed on the nodes of the mesh and the resulting ._\_‘f:-'_.:
s
- displacement gradients were calculated using standard (non-singular) and new, \'f-’
o A
: tixed method. The plots of the results of both methods, along with the exact -~
and unsmoothed N-mesh distributions, are presented in Figure 32. The typical .
behavior of the interpolation schemes is clearly more visible in Figure 33,
. where it is shown blown up on two elements closest to the crack front. The
-. results clearlyv indicate the improved accuracy of displacement gradient . RNLGR
RSO
s . . S
' modeling of the new mixed method over the previous, linear only method. The }\:"‘. "
Tele
!. deficiency of the standard F.E. modeling of displacement gradients is also e o
obvious from the plot, due to the discontinuities at element boundaries. 'f-:.-'\:
- A
. PN
N Additional improvement in this displacement gradient modeling is offered o
' XY
. ., by the use of transition elements (Labeyrie and Chauchot [37]). The approach ——n
.‘: ":‘ ‘-_:.:_:.:
e is based on focusing the singularities of a few elements, starting from the I
O N e
Soo. . . . . C YL
X quarter point element, on a single location, by moving their mid-side nodes to A:-,
__— R ]
suitable positions (Figure 34). Use of transition elements allows for a L.
Y
o
_ better modeling of displacement gradients by N-mesh alone, resulting in a '.:~';~-,‘
: AL
- better approximation by M-mesh. Our study of the transition elements showed ‘:J".“,-":
1‘ K *\*l
’ Rt Y
- that the better displacement gradient modeling capability of these elements .
- stems from the presence of the nonlinear term in the geometry mapping.
» .,
>, R
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Nonuniformity of geometry mapping allows for nonlinear displacement gradients,
enabling a more accurate fitting of the crack front displacement gradient
singularity. (Standard, exactly mid-side, quadratic elements map geometry in
a linear fashion. As a result, exactly linear variation of displacement
gradients is possible).

The results of the computations for the previous model, modified slightly
to produce transition elements, are presented on Figure 35. They show
important improvements over the previous model (without transition) Figure
32. The basiec difference between two N-mesh models is significantly reduced
discontinuity of displacement derivatives on element boundaries. Resulting
gains in the M-mesh interpolation accuracy reach 50%. The test clearly
substantiates the usefulness of transition elements.

The use of the new shape functions for displacement gradient modeling
results in a change in the nodal variables for the boundary. Instead of being
displacement derivatives at these locations, the new degrees of freedom are

actually the coefficients A in the expansion (49):

*
y, boundary _ gy op oy (r) (52)
i,a a0 i,a
where r is the crack front distance

This property allows for calculation of stress concentration factors from

boundary unknowns instead of displaceents at quarter point locations

* *
(v coso v sino)
K = 3,1 * 3.2 /on (53)
8(1-v°)
v 0+ V. _sine)
cos0 + sine
K=~ 5’2 /2 (54)
8(1-v)
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5.7 Directions of Further Work on Traction BIE
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‘v_;v'r
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NN Due to the lack of numerical results for the singularity mocdel in the
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h g

L4
4

traction BIE, it is difficult to formulate definitive conclusions. The

B |

frng
- ..\. v
P m S
F
Tl

N analysis of the exact solution and the results of the much improved oy

- -

;: i; displacement gradient modeling seem to indicate the possibility of substantial Ei;g%

. .. gains in the stress intensity factor accuracy. A little less certain is the .

:: :ﬁ impact of the singularity on the overall level of displacements. It is

; :: difficult to estimate the effect of the singularity on the oscillatory

. ' character of displacement results. The use of the collocation method for the A,

\; EE: formulation of system of equations from the original integral equation may be Si;

- responsible for this phenomenon. In this case, use of the weighted residual EE?

. 'l approach (Galerkin scheme) may be necessary to remove the oscillations. The ' ;;;.

gﬁ ” use of the‘Rayleigh-Ritz procedure (which is normally equivalent to the géfk

. B Galerkin scheme) suggested by Bui (30), in conjunction with singularity 'SES

s !f modeling, is impossible, due to the appearance of the (%) term in the four- l

- o fold integral resulting from the method. This term will result from

<,
‘3 two (7%) terms appearing in expliecitly formulated singularities of shape

¢ functions. X0

’ o

'2 Further work in the development of the method will require studies in the g

3 :3 method's capacity for modeling more complex cases. This capability is E::iéﬁ

; ‘ essential for the use of the algorithm as a part of alternating method. The E;:!g

f; i- more complex loading will probably necessitate the use of Galerkin scheme, Ezﬂéj

\E . since the collocation method carries no information about the interpolation of ii;ij

- loads, into the final system of equations. There are also indications, Hanson %?;:;
'-\'~\'-‘

§ E; and Phillips [38], that the Galerkin scheme will yield a more tractable set of 3Ei§§

- equations. ;::;j
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g4 6.0 PROGRAM ACCOMPLISHMENTS AND CONCLUSIONS
o
2 ’ o
SO The principal goal of the sponsored research was the development and :::::ﬁ:
. 4 ‘ RS
A - exploitation of the boundary-integral eguation method for fracture mechanics »‘-',.:‘,..
C..-".'!‘
kA analysis of two-dimensional problems with crack tip plasticity. The S
; ~* A
s e
S formulation approach used was quite unique and was based on a special BIE 0NN
< AOSAN
b . formulation which explicitly accounts for the presence of the crack in N
P, AN
. satisfying boundary conditions and, for the elastic problem, satisfying the —
. s R
N = internal equilibrium conditions. Elastoplastic behavior was successfully N
NS added to this special fracture mechanics modeling capability with positive \
- -" .
A benefits in terms of numerical and theoretical results. .t
i :j;i New theoretical developments were achieved as a direct result of the use A
'J .t 'v"":-"::
- of a BIE formulation approach. Finite element methods begin with an e
I-'I-"h.
- approximation of the total field equations for the problem; BIE does not. ,,f
:« N .-‘:‘:_\.\'
NN Because the BIE formulation makes direct use of relations that satisfy the .‘-:.\_f.;:
) o »
) "._ '-‘:‘\:“\
: T elastic field behavior, even for the numerical solution results, certain field )
s PN
y !‘ results are directly and exactly accounted for: ROPCR
M KSANG
. 1. The analytical formulation established limits on the strength of the :t;‘-::
.:' ':.. -._..._:_.
S plastic strain increment singularity. In finite element modeling, one can ::'::':
, NN
s deduce only the limits on strain energy. The BIE result confirmed that the e
':: plastic strain increment must satisfy the conditions of singularity previously .
3 ', : :'
v N, adduced to plasticity theory, based on nonlinear elastic modeling. TN
-, 2. The analytical result demonstrated that the plastic singularity i"’
‘- -"’-“‘-.
] ‘. -\-- -.
IR behavior derives from a singular eigenvalue problem of a unique form, for the :_\'.:‘.:_
T4 ,.'-..:-_.
ORSe plastic field near the crack tip. A¢ this point, the sclution to this ASKSA
- -.' -\.l
. singularity formulation is imbedded in the numerical algorithm. as an :.-__.!
. " analytical solution does not seem possib.-. .
N \_.
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3. A new result was achieved for the direct calculation of elastic
stress intensity factors for cracks influenced by nonsingular inelastic
strains. These problems include residual strain due to welding or
elastoplastic notch behavior, thermal strains, etc. The new result shows that
extremely accurate stress intensity factor calculations can be made which
directly account for these volumetric strain distributions. Published
numerical results were generated for plastic notches and for a simplified
welding problem.

4. As a result of 3., potentially very important insight has been
achieved into the behavior of crack extension into prior plastic zones, due to
cyclic loading of the crack. In particular, it was proven analytically and
confirmed numerically that the elastic singularity applies for the effect of
all prior crack tip plasticity on a crack which has slightly extended into
this prior crack tip plasticity. This result explains why certain residual
stréss retardation models apply to the fatigue crack overload problem. In
fact, results obtained using the new code, derived since the close of the
current contract, show that the effects of closure and retardation share a
dual role on reducing crack driving force; they are essentially two versions
of the same phenomenon.

5. The last major analytical result for the 2D problems was the
demonstration that the new BIE code could be used as a direct means for
calculation of two-dimensional crack weight functions for problems with
completely arbitrary geometries, boundary conditions, and internal strain
distributions. The new algorithm was demonstrated for severa! test problems
and shows accuracy comparable o the best numerical models available.

6. Finally, the results of the research will appear in several archival
Journal articles and have been presented in a variety of technical symposia.

The foliowing lists the articles and presentations:
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1. "Fracture Mechanics," T.A. Cruse, Boundary Element Methods in
Mechanics, book in series Computational Methods in Mechanics, edited by D.E.
Beskos, Elsevier Science Publishers B.V., Amsterdam, to be published.

2. "Elastoplastic BIE Analysis of Cracked Plates and Related Problems,
Part 1: Formulation," T.A. Cruse and E.Z.Polch, International Journal for
Numerical Methods in Engineering, vol. 23, pp. 429-437 (1986).

3. "Elastoplastic BIE Analysis of Cracked Plates and Related Problems,
Part 2: Numerical Results," T.A. Cruse and E.Z. Polch, International Journal
for Numerical Methods in Engineering, vol. 23, pp. 439-452 (1986).

4, "pdvanced Algorithms for Fracture Mechanics in Two and Three
Dimensions,”" T.A. Cruse and E.Z. Polch, 2nd International Conference on
Variational Methods in Engineering, Southampton, England, July 17-19, 1685,

5. "BIE Analysis of Crack Tip Plastic Zones," T.A. Cruse and E.Z. Polch,
Proc. of AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics, and
Materials Conference, Orlando, Florida, April 15-17, 1985, AIAA, New York.

6. "Application of an Elastoplastic Boundary Element Method to Some
Fracture Mechanics Problems," T.A. Cruse and E.Z. Polch, Engineering
Mechanies, vol. 23, No. 6, pp. 1085-1096 (1986).

7. "A General Solution Procedure for Fracture Mechanies Weight Function
Evaluation Based on the Boundary Element Method," T.A. Cruse, submitted to
Computational Mechanics: An International Journal.

8. "Buried Crack Analysis with an Advanced Traction BIE Algorithm," E.Z.
Polch, T.A. Cruse, and C.-J. Huang, Advanced Topics in Boundary Element
Analysis, Ed. by T.A. Cruse, A.B. Pifko, and H. Armen, AMD - Vol. 72, (Proc.
of Symposium at ASME Winter Annual Meeting, Miami Beach, Florida, November 17~
22, 1985), pp. 173-188, ASME, New York (1985).

The results developed to date are now being used in a systematic study of
cyclic crack extension. In particular, these results will be used to guide
the modeling and interpretation of data for the current AFOSR sponsored
research into small crack behavior, Contract FU49620-84-C-0042. It appears
clear to us that the behavior of fatigue cracks contains much new information
that we are now able to deduce through the unique modeling approcach associated
with the BIE methodology.

The principal focus of the ongoing work is the interaction of prior
plasticity with the current crack driving force. Simplified means for

accounting for this interaction are needed in order to do systematic studies
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